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result of global warming, desiccation, land use
change (31), and re-excavation by increased rates
of water erosion (24), as well as the dynamics of
SOC replacement at sites of erosion. Based on
our analysis, we reject both the notion that agri-
cultural erosion substantially offsets fossil fuel
emissions and the view that agricultural erosion
is an important source of CO2.
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Why Is Climate Sensitivity
So Unpredictable?
Gerard H. Roe* and Marcia B. Baker

Uncertainties in projections of future climate change have not lessened substantially in past
decades. Both models and observations yield broad probability distributions for long-term
increases in global mean temperature expected from the doubling of atmospheric carbon dioxide,
with small but finite probabilities of very large increases. We show that the shape of these
probability distributions is an inevitable and general consequence of the nature of the climate
system, and we derive a simple analytic form for the shape that fits recent published distributions
very well. We show that the breadth of the distribution and, in particular, the probability of
large temperature increases are relatively insensitive to decreases in uncertainties associated with
the underlying climate processes.

The envelope of uncertainty in climate pro-
jections has not narrowed appreciably
over the past 30 years, despite tremendous

increases in computing power, in observations,
and in the number of scientists studying the

problem (1). This suggests that efforts to reduce
uncertainty in climate projections have been im-
peded either by fundamental gaps in our under-
standing of the climate system or by some feature
(which itself might be well understood) of the
system’s underlying nature. The resolution of this
dilemma has important implications for climate
research and policy.

We investigate a standard metric of climate
change: Climate sensitivity is defined as the

equilibrium change in global and annual mean
surface air temperature, DT, due to an incre-
ment in downward radiative flux, DRf, that
would result from sustained doubling of at-
mospheric CO2 over its preindustrial value (2 ×
CO2). It is a particularly relevant metric for cur-
rent discussions of industrial emissions sce-
narios leading to the stabilization of CO2 levels
above preindustrial values (2). Studies based
on observations, energy balance models, temper-
ature reconstructions, and global climate models
(GCMs) (3–13) have found that the probability
density distribution of DT is peaked in the range
2.0°C ≤ DT ≤ 4.5°C, with a long tail of small but
finite probabilities of very large temperature in-
creases. It is important to ask what determines
this shape and, in particular, the high DT tail,
and to what extent we can decrease the dis-
tribution width.

Climate consists of a set of highly coupled,
tightly interacting physical processes. Under-
standing these physical processes is a massive
task that will always be subject to uncertainty.
How do the uncertainties in the physical pro-
cesses translate into an uncertainty in climate
sensitivity? Explanations for the range of
predictions of DT, summarized in (14), have
focused on (i) uncertainties in our understand-
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ing of the individual physical processes (in
particular, those associated with clouds), (ii)
complex interactions among the individual
processes, and (iii) the chaotic, turbulent nature
of the climate system, which may give rise to
thresholds, bifurcations, and other discontinu-
ities, and which remains poorly understood on a
theoretical level. We show here that the
explanation is far more fundamental than any
of these.

We use the framework of feedback analysis
(15) to examine the relationship between the
uncertainties in the individual physical processes
and the ensuing shape of the probability dis-
tribution of DT. Because we are considering an
equilibrium temperature rise, we consider only
time-independent processes.

Let DT = lDRf, where l is a constant. In the
absence of feedback processes, climate models
show l ≡ l0 = 0.30 to 0.31 [K/(W/m2)] (where
l0 is the reference climate sensitivity) (16),
giving an equilibrium increase DT0 ≈ 1.2°C in
response to sustained 2 × CO2. Because of
atmospheric processes, however, the climate
sensitivity has a value DT ≠ DT0. Conceptually,
the forcing DRf produces a temperature change
DT, which induces changes in the underlying
processes. These changes modify the effective
forcing, which, in turn, modifies DT. We assume
that the total change in forcing resulting from
these changes is a constant C times DT. Thus,
DT = l0 (DRf + CDT ), or

DT
DRf

≡ l ¼ l0

1 − f
ð1Þ

Here, the total feedback factor f ≡ l0 C (15).
Clearly, the gain G ≡ DT/DT0 > 1 if f > 0, which
appears to be the case for the climate system.
The range 2°C ≤ DT ≤ 4.5°C corresponds to
1.7 ≤ G ≤ 3.7 and 0.41 ≤ f ≤ 0.73. Under our
definitions, the feedback factors for individual
processes are linearly additive, but the temper-
ature changes, or gains, from individual pro-
cesses are not [see the supporting online material
(SOM)].

The uncertainties in measurements and in
model parameterizations can be represented as
uncertainties in f. Let the average value of f be
f and let its SD be sf, the sum of uncertainties
from all the component feedback processes. sf
can be interpreted in three ways: uncertainty
in understanding physical processes, uncer-
tainty in observations used to evaluate f , and,
lastly, inherent variability in the strengths of
the major feedbacks. If sf is fairly small, we
see from Eq. 1 that the uncertainty in the gain,
dG, is

dG ≈
1

ð1� f Þ2 sf ≡ ðGÞ2sf ð2Þ

Thus for G ≈ 3 (corresponding to DT ≈ 3.6°C),
uncertainties in feedbacks are magnified by
almost an order of magnitude in their effect on

the uncertainties in the gain. A second point is
that even if sf is not large, dG will be large if f
approaches 1: Uncertainty is inherent in a
system where the net feedbacks are substantially
positive.

Finally, Eq. 2 shows that it is the sum of all
the uncertainties in the feedbacks that
determines dG; the uncertainties in the large
positive feedbacks are not more important
than the others. For example, a compilation of

values of the feedback factors extracted from
several GCMs (17) finds considerable inter-
model scatter in the albedo feedback, and al-
though the average magnitude of this feedback
is not high, this scatter has an important
impact on the uncertainty in the total climate
sensitivity.

We now derive the shape of the distri-
bution hT (DT): the probability density that the
climate sensitivity is DT. The important

Fig. 1. Demonstration of the
relationships linking hT(DT) to hf( f ).
DT0 is the sensitivity in the absence
of feedbacks. If the mean estimate
of the total feedbacks is substantially
positive, any distribution in hf(f) will
lead to a highly skewed distribution
in DT. For the purposes of illustra-
tion, a normal distribution in hf ( f)
is shown with a mean of 0.65 and a
SD of 0.13, typical to that obtained
from feedback studies of GCMs
(17, 18). The dot-dashed lines rep-
resent 95% confidence intervals
on the distributions. Note that
values of f ≥ 1 imply an unphysical,
catastrophic runaway feedback.
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features of this distribution are the location of
its peak and the shape and extent of the
distribution at large DT. We focus on the re-
lationships between these features and the
parameters of the feedback distribution, f
and sf.

Figure 1 is a schematic picture of the rela-
tionships linking hT (DT ) to hf ( f ), the proba-
bility distribution of f. The reason for the long
tail of typical climate sensitivity distributions
is immediately evident [see also (3)]. Uncer-
tainties in climate processes, and hence feed-

backs, have a very asymmetric projection onto
the climate sensitivity. As the peak in the hf ( f )
distribution moves toward f = 1, the probability
of large DT also grows. The basic shape of hT
(DT ) is not an artifact of the analyses or choice
of model parameters. It is an inevitable
consequence of a system in which the net
feedbacks are substantially positive.

Formally, hT(DT) is related to hf ( f ) by the

relationship hT ðDTÞ ¼ hf ð f ðDTÞÞðdf =dDTÞ ¼
DT0 =ðDTÞ2 hf ð1 − DT0

DT
Þ. As i s common-

place, we assume the errors in the feedback
factors are normally distributed: hf ð f Þ ¼

ð 1
sf

ffiffiffiffi
2p

p Þexp − 1
2

ð f − f Þ
sf

� �2
" #

. Although the gen-

eral features of our results do not depend on this
assumption, it facilitates our analysis. Then,

hT ðDTÞ ¼ ð 1

sf
ffiffiffiffiffi
2p

p Þ DT0
DT2

� exp −
1

2

ð1− f − DT0
DT

Þ
sf

0
@

1
A

22
4

3
5 ð3Þ

Equation 3 shows how uncertainties in feedbacks
lead to uncertainty in the response of a system of
linear feedbacks. It can be shown that it is
algebraically equivalent to a Bayesian derivation
of a “posterior” distribution h(DT) based on a
uniform previous distribution on feedbacks
(SOM). As noted above, several studies have
described climate sensitivity distributions sim-
ilar in form to that indicated in Fig. 1 (4–13),
but the particular power of Eq. 3 is that it
provides a simple interpretation of the shape of
these distributions. It is also a function that
maps uncertainties in feedback processes onto
uncertainties in climate sensitivity and therefore
permits an analysis of its parametric depen-
dencies. Figure 2 shows hT(T) and pcum(DTc),
the cumulative probability that the climate
sensitivity DTwill exceed a given threshold, DTc,
for a range of values of f and sf. From Eq. 3, it
can be shown that, for all sf, half the area under
the curve occurs for DT < DT0.5. Decreasing
either sf or f concentrates the distribution
around DT = DT0.5.

The cumulative probability distributions show
that decreasing sf or f steadily reduces the cumu-
lative probability of large climate changes (e.g.,
DT ≥ 8°C). However, the probability that DT lies
in the interval immediately outside the range of
the Intergovernmental Panel on Climate Change
(IPCC) (say, 4.5°C ≤DT ≤ 8°C) is very insensitive
to sf and f and changes little with DTc. The cu-
mulative probability distributions (Fig. 2, C and
D) are driven by the extreme tail of the hT(DT)
distribution, which is a consequence of our choice
of a Gaussian for hf ( f ). Even if an hf ( f ) without
an extreme tail is assumed, the probability dis-
tributions in the interval beyond the IPCC range
remain insensitive to changes in sf (SOM).

Thus, foreseeable improvements in the
understanding of physical processes, and in the
estimation of their effects from observations,
will not yield large reductions in the envelope of
climate sensitivity. This relative insensitivity of
the probability distributions to sf is also a likely
reason why uncertainty in climate sensitivity es-
timates has not diminished substantially in the
past three decades.

We next compare hT (DT ) from Eq. 3 with
selected published distributions of climate sensi-

Fig. 3. Climate sensitivity
distributions: (A) from (18),
which calculated ( f , sf) of
(0.62, 0.13) from a suite of
GCM simulations; (B) from
(17), which found (f , sf) of
(0.7, 0.14) from a different
suite of models; and (C) from
the ~5700-member multi-
ensemble climateprediction.
net (9, 10) for different
choices of cloud processes.
[Data were provided courtesy
of B. M. Sanderson] (D) Fit of
Eq. 3 to the result of (10),
which was found by esti-
mating the mode of the
probability density and its
accompanyingDT and solving
for ( f , sf) from Eqs. 2 and 3,
which yielded values of (0.67, 0.12).
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tivity. Figure 3 shows a distribution, determined
from the multi-ensemble climateprediction.net
experiment, for different representations of sev-
eral cloud processes (9, 10). Independent es-
timates of feedback parameters for two different
suites of GCMs (17, 18) determine values for
( f , sf ) of (0.70, 0.14) and (0.62, 0.13), re-
spectively (19). We calculate the implied climate
sensitivity distributions from Eq. 3. These match
the numerically derived distributions of (10)
quite well. We obtained a closer match by solv-
ing Eq. 3 for the f and sf that effectively char-
acterize the feedback processes within the
model used by (9, 10) and used these parame-
ters to generate the distribution.

Fits to several other published distributions
(obtained by a wide variety of techniques),
shown in Fig. 4, are also quite successful, with
values 0.15 ≤ f ≤ 0.86 and 0.10 ≤ sf ≤ 0.35.
Some differences are seen, especially in the tail
of the distributions. This is to be expected be-
cause some studies explicitly analyze the non-
Gaussian distribution of uncertainties in the
physics and various a priori assumptions.
Nonetheless, all of these published distribu-
tions are, to a good approximation, consistent
with propagation of physical-process uncer-
tainties in a simple system of linear feedbacks.

The shape of hT (DT ), including its tail, is
crucially dependent on the magnitude of f ,
which we have assumed is independent of DT. Is
there any chance that, as warming continues, the
probability of extreme values of DTwill actually
diminish? This might result if the feedback
factors are functions of temperature. We have
performed a preliminary analysis of the changes
in the hT (DT ) distribution that would result from
adding nonlinear terms in the Stefan-Boltzmann
and water vapor feedbacks (SOM). This analy-
sis shows that these second-order effects are
equivalent to decreasing f by about 0.01 to 0.02,
the small effect of which can be gauged from the
curves in Fig. 2. To remove the skewness
completely would require changes in feedback
strength that are about 25 times as great (SOM).
Several nonlinear interactions of this strength
might, however, contribute an additional sf ~ 0.1,
which would change the particulars of a given
probability distribution but not its fundamental
characteristics. The identification and quantifi-
cation of these nonlinear interactions are enor-
mously harder tasks than the analysis of the linear
feedbacks. It may be that a practical limit to the
predictability of climate sensitivity should be
anticipated.

It is tempting to speculate on what we can
learn about the extreme tail of hT (DT ) from
paleoclimate data. For instance, Eq. 3 can be
extended to evaluate how uncertainties in re-
constructions of past temperatures and net
radiative forcing propagate to uncertainties in
feedback strengths. Moreover, the data that we
have on extreme climates [for example, the
Eocene warmth and Proterozoic “snowball
Earth” (20, 21)] suggest that the climate system

may have been acutely sensitive to radiative
forcing during some intervals of Earth’s history.
Our results imply that dramatic changes in
physical processes are not necessary for dramat-
ic changes in climate sensitivity, provided that
those changes in processes can all align in the
same direction toward increased sensitivity.
These are events of low but not zero probability.

Despite the enormous complexity of the
climate system, the probability distribution of
equilibrium climate sensitivity is well charac-
terized by Eq. 3, which reflects the straight-
forward, compounding effect of essentially
linear feedbacks and depends on only the two
parameters f and sf. We have shown that the
uncertainty in the climate sensitivity in 2 × CO2

studies is a direct and general result of the fact
that the sum of the underlying climate feedbacks
is substantially positive. Our derivation of hT (DT)
did not depend on nonlinear, chaotic behavior of
the climate system and was independent of
details in cloud and other feedbacks. Equation 3
appears to explain the range of climate sen-
sitivities reported in previous studies, which are
well synthesized by the IPCC (1). Furthermore,
reducing the uncertainty in individual climate
processes has little effect in reducing the
uncertainty in climate sensitivity. We do not
therefore expect the range presented in the next
IPCC report to be greatly different from that
in the 2007 report. On the basis of the values of
f and sf compiled from our analysis of a large
number of published results, it is evident that the
climate system is operating in a regime in which
small uncertainties in feedbacks are highly am-
plified in the resulting climate sensitivity. We are
constrained by the inevitable: the more likely a
large warming is for a given forcing (i.e., the
greater the positive feedbacks), the greater the
uncertainty will be in the magnitude of that
warming.
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